
Challenges and Methods in Testing the Remote Agent Planner

Ben Smith Martin S. Feather Nicola Muscettola
Jet Propulsion Laboratory Jet Propulsion Laboratory NASA Ames Research Center

4800 Oak Grove Drive 4800 Oak Grove Drive Moffet Field, CA 94035
California Institute of Technology California Institute of Technology MS 269-2

Pasadena, CA 91109 Pasadena, CA 91109 mus@ptolemy.arc.nasa.gov
benjamin.smith@jpl.nasa.gov martin.s.feather@jpl.nasa.gov

Abstract

The Remote Agent Experiment (RAX) on the Deep
Space 1 (DS1) mission was the first time that an arti-
ficially intelligent agent controlled a NASA spacecraft.
One of the key components of the remote agent is an
on-board planner. Since there was no opportunity for
human intervention between plan generation and ex-
ecution, extensive testing was required to ensure that
the planner would not endanger the spacecraft by pro-
ducing an incorrect plan, or by not producing a plan
at all.
The testing process raised many challenging issues, sev-
eral of which remain open. The planner and domain
model are complex, with billions of possible inputs and
outputs. How does one obtain adequate coverage with
a reasonable number of test cases? How does one even
measure coverage for a planner? How does one deter-
mine plan correctness? Other issues arise from devel-
oping a planner in the context of a larger operations-
oriented project, such as limited workforce and chang-
ing domain models, interfaces and requirements. As
planning systems are fielded in mission-critical appli-
cations, it becomes increasingly important to address
these issues.
This paper describes the major issues that we encoun-
tered while testing the Remote Agent planner, how we
addressed them, and what issues remain open.

Introduction
As planning systems are fielded in operational environ-
ments, especially mission-critical ones such as space-
craft commanding, validation of those systems becomes
increasingly important. Verification and validation of
mission-critical systems is an area of much research and
practice, but little of that is applicable to planning sys-
tems.

Our experience in validating the Remote Agent plan-
ner for operations on board DS1 raised a number of key
issues, some of which we have addressed and many of
which remain open. The purpose of this paper is to
share those experiences and methods with the planning
community at large, and to highlight important areas
for future research.
Copyright @ 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

At the highest level there are two ways that a planner
can fail. It can fail to generate a plan within stated time
bounds1 (converge), or it can generate an incorrect plan.

Plans are correct if they command the spacecraft in a
manner that is consistent with accepted requirements.
If the domain model entails the requirements, and the
planner enforces the model, then the plans will be cor-
rect. One must also validate the requirements them-
selves to be sure they are complete and correct.

Ideally we would prove that the domain model en-
tails the requirements: that is, prove that the model
will always (never) generate plans in which particular
conditions hold. This may be possible for some require-
ments, but is almost certainly undecidable in general.

A more practicable approach, and the one we used for
RAX, is empirical testing. We first had spacecraft engi-
neers review the English requirements for completeness
and accuracy. We then generated several plans from
the model and developed an automated test oracle to
determine whether they satisfied the requirements as
expressed in first order predicate logic. A second (triv-
ial) oracle checked for convergence. If all of the test
cases converge, and the test cases are a representative
sample of the possible output plans (i.e., have good cov-
erage), then we have high confidence that the planner
will generate correct plans for all inputs.

The key issue in empirical testing is obtaining ade-
quate coverage (confidence) within the available testing
resources. This requires a combination of strong test se-
lection methods that maximize the coverage for a given
number of cases, and strong automation methods that
reduce the per-test cost. Complex systems such as plan-
ners require huge numbers of test cases with corresond-
ingly high testing costs, so this issue is particularly crit-
ical for planners.

We developed a number of test automation tools, but
it still required six work-weeks to run and analyze 300
cases. This high per-test cost was largely due to human
bottlenecks in analyzing results and modifying the test

'Since the search space is exponential there will always
be inputs for which a plan exists but cannot be found within
the time limit. Testing needs to show that the planner will
converge for all of the most likely inputs and a high propor-
tion of the remaining ones.

mailto:mus@ptolemy.arc.nasa.gov
mailto:benjamin.smith@jpl.nasa.gov
mailto:martin.s.feather@jpl.nasa.gov

cases and automations in response to domain model
changes. This paper identifies the bottlenecks and sug-
gests some ways of eliminating them.

With only 300 cases it was impossible to test the
planner as broadly as we would have liked. To keep
the test suite manageable we used a “baseline testing”
approach that focused the test effort on the input cases
most likely to be used in operation. This strategy yields
high confidence in inputs around the baseline but very
low confidence in the rest of the input space. This risk
is appropriate when there is a baseline input scenario
that changes slowly and becomes fixed in advance of op-
erations, as is common in space missions. Late changes
to the baseline could uncover bugs not exercised by the
prior baseline at a stage where there is insufficient time
to fix them.

This risk could be reduced with formal coverage met-
rics. Such metrics can identify coverage gaps. Even if
there are insufficient test resources to plug those gaps
the tester can at least address the most critical gaps
with a few key tests, or inform the project manager as
to which inputs to avoid. Coverage metrics also enable
the tester to maximize the coverage of a fixed number
of tests.

To our knowledge no such metrics exist for planning
systems and we did not have time to develop one of our
own for testing RAX. Instead we selected cases accord-
ing to an informal coverage metric. Since test adequacy
could only be assessed subjectively we used more cases
than were probably necessary in order to reduce the risk
of coverage gaps. Formal coverage metrics for planning
systems are sorely needed to provide objective risk as-
sessments and to maximize coverage.

The rest of this paper is organized as follows. We
first describe the RAX planner and domain model. We
then discuss the test case selection strategy, the effec-
tiveness of that strategy, and the opportunities for fu-
ture research into coverage metrics and test selection
strategies. We then discuss the test automations we
employed, the demands for human involvement that
limited their effectiveness, and suggest automations and
process improvements that could mitigate these factors.
We conclude with an evaluation of the overall effective-
ness of the Remote Agent planner testing, and summa-
rize the most important open issues for planner testing
in general.

RAX Planner
The Remote Agent planner (Muscettola et al. 1997) is
one of four components of the Remote Agent (Nayak et
al. 1999; Bernard et al. 1998). The other components
are the Executive (EXEC) (Pel1 et al. 1997), Mission
Manager (MM), and Mode Identification and Reconfig-
uration (MIR) (Williams & Nayak 1996).

When the Remote Agent is given a “start” command
the EXEC puts the spacecraft in a special idle state, in
which it can remain indefinitely without harming the
spacecraft, and requests a plan. The request consists of
the desired plan start time and the current state of the

Trans. Ptg Trans. Ptg Constant Pointing on Sun
i i

contained-by

Unscheduled Comm Scheduled Comm Unscheduled Comm

I I , ,
contained-by

1

Thr I P
Accumulated Thrust Time pf”. Thr I

Figure 1: Plan Fkagment

spacecraft. The desired start time is the current time
plus the amount of time allocated for generating a plan
(as determined by a parameter, and typically between
one and four hours).

The Mission Manager extracts goals from the mission
profile, which contains all the goals for the experiment
and spans several plan horizons. A special waypoint
goal marks the end of each horizon. The MM extracts
goals between the required start time and the next way-
point token in the profile. These are combined with the
initial state. The MM invokes the planner with this
combined initial state and the absolute horizon start
time, which is the requested plan start time.

The planner expands the initial state into a conflict-
free plan using a heuristic chronological backtracking
search. During the search the planner obtains addi-
tional inputs from two on-board software modules, the
navigator (NAV) and the attitude control subsystem
(ACS). These are also referred to as “plan experts.”
When the planner decides to decompose certain nav-
igation goal into subgoals, it invokes a NAV function
that returns the subgoals as a function of the goal pa-
rameters. The planner queries ACS for the duration
and legality of turn activities as a function of the turn
start time and end-points.

The fundamental execution units in the plan are to-
kens (activities). Tokens also track spacecraft states
and resources. Tokens exist on parallel timelines, which
allows activities to be executed in parallel. The plan
specifies start and end time windows for each token,
and temporal constraints among the tokens (before, af-
ter, contains, etc).

Nominal Execution. If the planner generates a plan
the EXEC executes it. Under nominal conditions the
plan is executed successfully and the EXEC requests a
new plan. This plan starts at the end of the current
plan, which also happens to be the start of the next
waypoint in the profile.

Off-nominal Execution. If a fault occurs during ex-
ecution, and the EXEC cannot recover from it, it termi-
nates the plan and achieves an idle state. This removes
the immediate threat of the fault. Depending on the
failure, it may only be able to achieve a degraded idle

This selection approach required only a hundred or
so cases to cover the on-board inputs that could occur
during the experiment for any fixed set of ground in-
puts, but required an unmanageable tens of thousands
of cases to cover the full space of ground inputs. In-
stead, we traded risk for coverage by testing just the
ground inputs we thought most likely to be used for
the experiment, and performing a last-minute success-
oriented test on those inputs when they became avail-
able.

On-board Input Selection

The on-board inputs are the plan start time, initial
state, and pseudo-random seed. Values of these inputs
are partitioned into two test suites, a “replan” suite
and a “back-to-back” suite. If real faults occur during
the experiment, a replan could occur at any time. The
initial state could be a nominal or degraded idle state.
The replan suite exercises these cases.

In nominal conditions, the plan start times are at
the horizon boundaries and the initial state is the final
state of the previous plan. This is called “back-to-back”
planning. For each back-to-back plan in the profile, the
back-to-back suite exercises the possible final states of
the previous plan and it’s fixed plan start time (the
horizon boundary). The inputs for these two suites are
selected as follows.
Initial States. There are four idle states (all combi-
nations of MICAS healthy or not, and MICAS on or
off). The replan suite exercises all of them. The final
states of a plan are the initial state for the following
back-to-back plan. The experiment has only one such
plan and it’s prior plan has 14 final states. The back-
to-back suite exercises all of these.
Replan start time. A replan can occur at any one-
second tick between zero and the end of the experiment.
The start time impacts the plan in three ways: it de-
termines which goals the MM extracts for the planner,
the proximity of those goals to the start horizon, and
the length of the planning horizon. The first impact is
exercised by selecting start times at the start of each
goal token. This will exercise all ways of selecting goals
from the profile.

The second impact primarily affect goals that require
some amount of time before or after the goal for related
activities. For example, the NAVIGATE token decom-
poses into SEP-THRUSTING activities which must be
preceded by a one-hour warm-up activity. Plan start
times should therefore be chosen at the boundaries of
these durations.

The third impact primarily affects the SEP-related
tokens. The planner first places the op-nav windows
and a few other required activities. SEP is then sched-
uled in the remaining gaps. As the horizon shrinks, it
becomes more difficult to schedule SEP activities. Iden-
tifying these horizon lengths would require a detailed
analysis of the domain model, profile, and NAV goals

that would have to be repeated whenever the model
changed. Instead, we observed that the times selected
for the other two impacts produced several different
horizon lengths and accepted those as adequate.
Random Seeds. The random seeds tested were the
default seed, plus two additional seeds. The default
seed is always used on the first attempt, which should
succeed if the planner is adequately tested. Other seeds
are used only when the first attempt fails, and the
EXEC makes at most five attempts. Three seeds there-
fore seemed reasonable.

Multiple Variation Test Cases
After selecting input parameter values, the next prob-
lem was selecting a manageable number of cases from
the space of all combinations of those input values. We
used orthogonal arrays (Cohen et al. 1996) to generate
a minimal-sized test-suite in which every pair of input
values appears in at least one test case, and every input
value appears in about the same number of cases.

This approach detects every bug caused by a single
input value or by an interaction of two input values.
It will detect only some bugs caused by interactions of
three or more input values. The risk of this approach
is that it assumes that the majority of bugs are due to
one or two input values.

The final test suite had 300 test cases. To exhaus-
tively test all input combinations would have required
over one billion cases. This reduction is possible be-
cause each case tests several pairs, and because it omits
many higher-order combinations.

This set was augmented throughout the testing pro-
cess with higher-order combinations that we felt were
important to test. New cases were typically added to
focus on faulty behaviors discovered, or hinted at, by
the standard test cases.

Single Variation Test Cases.
Each multi-variation case changes several parameter
values at once. When the planner failed to generate
a plan, it was difficult to determine which parameters
were responsible for the failure.

To address this problem, we constructed a second
suite of test-cases in which each case changes only one
parameter value from a baseline case that is known to
generate a plan. The changed parameter value was
therefore the most likely cause of the failure.

The number of single-variation test cases was equal
to the sum of the parameter values, or 120 cases. In
practice, these ”single variation” cases caught most
of the initial bugs. These cases also helped diagnose
many of the failed multi-variation test cases, which
often failed for the same reason as one of the single-
variation cases. The remaining bugs were identified by
the multi-variation cases but not by any of the single-
variation cases. The high bug detection rate with a few
test cases suggest that single-variation testing might be

tokens
waypoint

parameters

frequency (int), duration (int). navigate
HZN-END, EXPT-START, EXPT-END

Comm none
power-estimate amount (0-2500)
execactivity type, file, int, int, boo1
sepsegment vector (int), level (0-15)
max-thrust duration (0-inf)
image-goal target (int), exposures (O-20),

slack (int)

exp. duration (0-15)

Table 1: Goal Tokens

state (e.g., the camera is declared broken). It then re-
quests a new plan that achieves the remaining goals
from the achieved idle state. As with other requests,
the required start time is the current time plus the time
allowed for planning.

Planner Inputs. The planner and mission manager
can be treated as a unit for testing purposes. The inputs
are the mission profile, initial state, plan start time,
random seed, and plan expert outputs. The start time
determines which goals the MM extracts from the pro-
file. The other inputs are independent.

RAX DS1 Domain Model.
The domain model encodes the knowledge for com-
manding a subset of the DS1 mission known as ”active
cruise” that consists primarily of firing the ion propul-
sion (IPS) engine along a NAV-specified thrust arc; tak-
ing optical navigation (op-nav) images of asteroids with
the MICAS camera from which NAV determines the
spacecraft position; and slewing (turning) the space-
craft among image targets and thrust vectors.

Table 1 lists the goal tokens. The sepsegment and
max-thrust-time tokens specify the thrust arc. The seg-
ments specify the direction and level of any thrust con-
tained by that token and max-thrust-time specifies the
desired thrust time. The navigate token determines the
duration and periodicity (IfI a “slack” value) of the op-
nav windows, and the takeimage-goal tokens specify
the image targets. The comm(unication) tokens spec-
ify periods when the spacecraft must have the low-gain
antenna Earth-pointed. The exec-activity goals specify
simulated faults that EXEC should inject into RAX.
These were added to demonstrate RAX’s fault recovery
capabilities since real faults were unlikely to occur dur-
ing the experiment. The power-estimate is the power
level to use for planning, and waypoints delineate hori-
zon boundaries.

Table 2 shows the initial states. NO-ACTIVITY
token specifies the last exec-activity token executed
to avoid planning an executed goal during a re-
plan. The attitude token specifies the initial attitude.
The MICAS-HEALTH token specifies whether the MI-
CAS power switch is broken or healthy, and the MI-

tokens parameters
NOACTIVITY

IDLE-SEGMENT
TIMER-IDLE none
SEP-STANDBY none
CONSTANT-POINTING I target E { Earth,

image, thrust vector } 3
MICAS-IDLE

1 none PLANNER-IDLE
1 none NAV-IDLE
1 none INACTIVE
2 healthy E true, false MICAS-HEALTH

none MICAS-OFF
2 none MICAS-READY or
1 none

Combinations 36

Table 2: Initial State Tokens

CAS-MODE token determines whether it is on or off.
If MICAS is stuck the plan cannot change the switch
state. If it is stuck-off the plan cannot take images. The
other initial state tokens are fixed.

Test Selection Strategy
The key test selection issue is achieving adequate cov-
erage with a manageable number of cases. Test selec-
tion should ideally be guided by a coverage metric in
order to ensure test adequacy. Coverage metrics gen-
erally identify equivalence classes of inputs that result
in qualitatively similar behavior with respect to the re-
quirement being verified. A set of tests has full coverage
with respect to the metric if it exercises the test artifact
on one input from each class.

The verification and validation literature is full of
coverage metrics for mission-critical systems (e.g., code
coverage), but to our knowledge there are no coverage
metrics specifically suited to planning systems. The
most relevant metrics are those for verifying expert
system rule bases. The idea is to backward chain
through the rule base to identify inputs that would re-
sult in qualitatively different diagnoses (e.g., (O’Keefe
& O’Leary 1993)). Planners have more complex search
engines with correspondingly complex mappings, and a
much richer input/output space. It is unclear how to in-
vert that mapping in a way that produces a reasonable
number of cases.

For the RAX planner we used a very straightforward,
informal version of this strategy. For each input param-
eter we selected values at extrema (e.g., low, middle,
high) or values that we thought would produce qualita-
tively different plans or paths through the search space.
Although only a few values of each parameter are se-
lected, it was still impractical to test all combinations of
those values (there are millions). Two methods termed
multi-variation and single-variation selected a subset of
these combinations for testing.

a good approach for applications with a high risk toler-
ance and limited testing resources.

Ground Input Selection
The ground inputs consist of the mission profile, plan-
ner parameters (such as the planning duration), and
parameter settings for ACS and NAV. The most impor-
tant of these inputs is the one used for the experiment
itself. Planner testing had to ensure that the planner
would meet its requirements for all on-board inputs it
could receive with this single ground input in effect.

Without a formal metric to show how the profiles and
other ground inputs would impact the output plans, it
would have required thousands of cases to feel confident
in the coverage. Since this was unmanageable, we fo-
cused on the ground inputs most likely to be used in
flight. The test cases consisted of the current set of
expected inputs (the baseline) and the most likely fu-
ture changes. As the experiment approached, the base-
line become better defined and the test cases were up-
dated accordingly. The inputs were finalized one month
before the experiment at which point we tested them
against all possible replan times. Since there would be
little time to fix any bugs detected at this point the
prior testing had to provide high confidence that these
last-minute tests would pass. We termed this approach
“baseline testing.”

The baseline inputs were as follows. The chosen ACS
slew durations, NAV image parameters, and SEP thrust
levels were low, medium, and high values within the
range of expected values. The remaining plan expert
input, the NAV thrust arc, is specified as a series of
sepsegment tokens. We exercised zero to three seg-
ments with several relative placements, and appealed
to induction to cover four or more segments. We also
changed the goals in the profile. We changed the dura-
tion and placement of the op-nav windows, the power
level, and the absolute experiment start time. The exec
activities were not varied since they were under our con-
trol. We intended to test comm goal variations, but
dropped this after early indications that we would have
full antenna coverage during the experiment and could
therefore eliminate the goals or set them as we wished
(we did the later).
Risks of Baseline Testing. Baseline testing as-
sumes that the final baseline will be very close to the
last tested baseline, and that any last-minute changes
will have been covered by the most recently tested vari-
ations. This approach is vulnerable to radical changes
made close to execution. Radically different inputs will
not have been adequately tested, and there will be less
time to address any bugs that occur at this stage. If
changes occur very close to execution, and the new base-
line uncovers new bugs, there will not be time to fix
them. The execution would have to be delayed, or it
would have to proceed with the bugs present. Project
mangers must be made aware of these risks and be pre-
pared to address these contingencies if they occur.

011

+2 7 5 2 FLT 07
-7 15 0 10 -12,+3 2 FLT 05

0 1 6 FLT 03
0 +5 6 029

+9 8 +9 1 +8 6 026
-1 10 0 6 019

1 0 6 015
6 1 6

Table 3: Profile Evolution

The RAX baseline was relatively stable for over a
year. Table 3 summarizes the evolution of the RAX
baseline profile. Over this period the only change to
the goal tokens were an addition of four comm goals
(and four “no-comm” goals between them) in version
026; an additional waypoint token parameter and three
navigate token parameters in 026; and an additional
exec-activity parameter in 029. The relative placement
of the goals remained stable, although the absolute
placement changed frequently.

Beginning in January of 1999 RAX experienced two
late baseline changes. The first change occurred in Jan-
uary when we integrated the planner with the real plan
experts, which had just become available. Until then we
had been testing with simulated experts. The real ex-
perts turned out to have different ranges than the sim-
ulators. For example we assumed turn durations were
at most 20 minutes, but in fact some turns could take
over an hour. The requirements were either incorrectly
captured to begin with, or had changed unbeknownst to
the RAX team. Since the experts were available later
than originally expected, there was now no time in the
schedule to rerun the full test suite with the new base-
line. We had to be content with a handful of tests that
exercised the new ranges.

The second change occurred in March, two months
before the experiment. For operational reasons RAX
was no longer allowed to turn off the MICAS camera
and had to reduce IPS thrusting from five days to un-
der twelve hours. The baseline profile changed from
six days to two, deleted an exec activity goal and four
comm goals, changed several navigate goal parameters,
and changed the absolute placement of the goals. The
goal definitions, relative placement, and overall struc-
ture remained the same. Less radical changes occurred
over the next month as the baseline stabilized (navigate
token parameters and temporal relations). The original
baseline tests apparently covered this space well enough
that only two minor bugs were detected in the final test-
ing of the new baseline. This is probably because the
basic structure of the two baselines were similar, even
though several major changes were made.

Test Effectiveness
This selected tests were ultimately successful in validat-
ing the planner in that they provided sufficient confi-
dence for the DSl project to approve the Remote Agent
Experiment for execution on DS1, and the on-board
planner exhibited no faults during the experiment. A
total of 211 bugs were reported.

Since there were no formal coverage metrics, it was
difficult to assess test adequacy. Some 22 problems, or
a little over 9% of the total problem reports, were dis-
covered during integration and development but would
not have been caught by the official test suite. These
problems provide useful insight into the coverage gaps.

1. Planning problems became more challenging when we
transitioned from the 6 day scenario to the 2 day
scenario. The temporal compression led to the dis-
appearance of slack time between activities. In the 6
day scenario PS could exploit this slack to achieve
subgoals without backtracking. In the 2 day sce-
nario backtracking became necessary, revealing addi-
tional brittleness in the PS chronological backtrack-
ing search.

2. In at least one case the test selection missed key
boundary values that would have been apparent with
a more detailed model analysis. This problem de-
pended upon the specific values of three continuous
parameters: the time to start up the IPS engine, the
time to the next optical navigation window, and the
duration of the turn from the IPS attitude to the first
asteroid. An equation relating these parameters can
crisply identify the boundary values that should be
exercised.

These coverage gaps could have been detected if bet-
ter coverage metrics had been available to guide test
selection. The test selection was based on an informal,
high level analysis of the model, and doubtless missed
many such subtle interactions.

Formal Coverage Metrics Needed
Formal coverage metrics are sorely needed for planner
validation. We required thousands of cases to cover the
ground inputs, especially the goals, because there was
no formal analysis to indicate which input combinations
needed to be tested and which could be ignored. A
good metric would have allowed us to eliminate unnec-
essary combinations confidently and determine where
additional cases were needed.

Formal metrics provide can identify coverage gaps
and can inform cost-risk assessments. If one knows
how many cases are needed for a given level of cov-
erage (risk), one can make an informed decision on how
to balance the number of cases (cost) against coverage
(risk).

Formal coverage metrics, such as code coverage, have
been developed for critical systems but to our knowl-
edge no metrics have been developed for measuring cov-
erage of a planner domain model. This is clearly an area

for future research. A few possibilities are discussed be-
low.

Constraint coverage. One possible coverage metric
is the number of compatibilities covered. This is anal-
ogous to a code coverage metric. For a given plan, it
determines which compatibilities (constraints) it uses,
and how those compatibilities were instantiated. A
good test suite should exercise each instantiation of
each compatibility at least once.

Goal-Interaction coverage. This coverage metric is
targeted at exercising combinations of strongly interact-
ing goals. Since testing all combinations is intractable,
the idea is to analyze the domain model to determine
how the goals interact, and only test goal combinations
that yield qualitatively different conflicts. For example,
if goals A and B used power, we would test cases where
power is oversubscribed by several A goals, by several
B goals, and by a combination of both goals.. The cov-
erage could be adjusted to balance risk against number
of cases. One could limit the coverage to interactions
above a given strength threshold.

This metric would extend on prior work on de-
tecting goal interactions in planners to improve up
the planning search, such as STATIC (Etzioni 1993),
Alpine (Knoblock 1994) and Universal Plans (Schop-
pers 1987). STATIC generates a problem solving graph
from the constraints and identifies search control rules
for avoiding goal interactions. Alpine identifies interac-
tions to find non-interacting sub-problems, and univer-
sal plans (Schoppers 87) derive reactive control rules
from pair-wise goal interactions. These methods are
designed for STRIPS-like planning systems and would
have to be extended to deal with metric time and aggre-
gate resources, both of which are crucial for spacecraft
applications. One of the authors (Smith) is currently
pursuing research in this area.

Slack metric. Another approach being pursued by
one of us (Muscettola) is to select plan start times by
analyzing the slack in the baseline plans. This approach
was used to manually select plan start times once the
final baseline was frozen just prior to the experiment.

Using our knowledge of the PS model, we manually
identified boundary times at which the topology of the
plans would change. We identified 25 such boundary
times and generated a total of 88 test cases correspond-
ing to plans starting at, near, or between boundary
times. This led to the discovery of two new bugs. Fur-
thermore, analysis of the test results showed that PS
would fail to find a plan at only about 0.5% of all possi-
ble start times. Although the probability of this failure
was extremely low, contingency procedures were devel-
oped to ensure that the experiment could be success-
fully continued even if this PS failure actually occurred.

Test Automation
Automation played a key role in testing the Remote
Agent planner. It was used for generating tests, run-

ning tests, and checking test results for convergence and
plan correctness. Even so, the demand for human in-
volvement was high enough to limit the number of test
cases to three hundred per six week test period, or an
average of ten cases per work-day.

There were two main bottlenecks where human in-
volvement was required: analysis, and changes to the
test suite and automation infrastructure caused by
changes to the model and baseline. This section dis-
cusses the automations that we found effective, the hu-
man bottlenecks, and opportunities for further automa-
tion.

Testing Tasks
The Remote Agent software, including the planner, was
released for testing every six to eight weeks. The plan-
ner was exercised on the full set of test cases. A typical
test cycle consisted of the following activities.

The tester updates the set of test cases as required
by any changes to the baseline, goal tokens, or initial
state tokens. A test harness invokes the planner on each
test case and collects the output. If the test cases ex-
ercise new input parameters, or planner interfaces have
changed, the harness must be upgraded and debugged
first. The tester makes sure that the plans ran properly,
and re-runs any that failed for irrelevant reasons (e.g.,
the ACS simulator did not start).

The test results are analyzed by two oracles. The
first checks for convergence, and the second for plan
correctness. The oracles say that a requirement failed,
but not why it failed. The tester reviews the output to
determine the proximate cause and files a bug report.

Finally, the analyst confirms purported bug fixes
from the previous release as reported in the bug-
tracking database. Each bug has one or more support-
ing cases. The analyst determines whether those cases
passed, or whether the bug is still open. In some in-
stances, the tester may have to devise additional tests
to confirm the bug fix.

Test Automation Tools.
We employed several test automation tools for validat-
ing the Remote Agent planner, which are summarized
below.
0 Test case generator. This tool generated a man-

ageable number of test cases from the cross product
of all selected parameter values. It first selected the
input parameters that would comprise each test case,
according to the single-variation and multi-variation
(orthogonal arrays) methods described earlier. It
then converted the parameter values to input files:
initial state, planner parameters (random seed), and
a parameter file that governs the ACS and NAV sim-
ulators. The mission profiles were too difficult to gen-
erate automatically and were constructed by hand.

0 Test Harness. The harness invokes the planner
with the inputs for a given test case and collects the
output, which consists of the plan file (if any), time

Task I Effort
Update/debu.g cases, tools I 3.0
Run c&es and analyzers 0.1
Review analyzer output 1.5
File bug reports I 0.5
Close bigs-

5.6 Tot a1
0.5

Table 4: Test Effort in Work Weeks by Task

spent planning, search trace, the initial state gener-
ated by the mission manager, and the simulator and
harness output.

0 Plan Correctness Oracle. The oracle reads a plan
into an assertions database and then verifies that the
assertions satisfy requirements expressed in first or-
der predicate logic (FOPL). This tool (Feather 1998;
Feather & Smith. 1999) was implemented in AP5, a
language that supports these kinds of FOPL opera-
tions.
The oracle also verified that the plan engine enforced
the plan model by automatically converting the plan
model into equivalent FOPL statements and check-
ing the plan against them. Compatibilities are of the
form "if token A exists in the plan, then there also
exists a token B such that the temporal relation R
holds between A and B." This maps onto an equiva-
lent FOPL requirement: A + B A R(A, B) .

Human Bottlenecks
The biggest demand for human involvement was from
changes to the model and baseline that required modify-
ing the test cases and tools. The next largest demand
was for reviewing the output from the automated re-
quirement checkers as a prelude to filing bug reports.
The test effort by task is shown in Table 4.

Impact of Model and Baseline Changes. About
half of the test effort in each cycle were the result of
changes to the model, baseline, and planner interfaces.
These changes required modifications to the composi-
tion of the test suite, and modifications to the test har-
ness. Table and shows how the model evolved over
several releases, and Table 3 in the Test Selection sec-
tion shows how the baseline evolved.

When new input parameters are added, the harness
must be updated to process them appropriately. These
changes are fairly straightforward, and can typically be
completed and debugged in about a day.

A more time-consuming impact comes from tracking
changes to planner interfaces. Most of the test param-
eters are converted into planner input files which the
harness feeds to the planner. The initial state, simula-
tor parameters file, and the planner parameters file are
created automatically; the mission profiles are created
manually. When the syntax or semantics of these files
changed, or the input parameters changed, the input

029
FLT 003
FLT 005
FLT 007

date

7/09/98
8/23/98
9/07/98

10/02/98
11105.98
12/16/98

4/23/98

2/07/99
3/19/99
4/08/99

compats
43
40
39
37
39
41
46
46
46
46

relations I disjuncts
121 I 19
120
116
111
207
237
261
257
261
259

Table 5: Model Evolution

19
19
19
19
23
26
26
26
27

files had to be regenerated.
Although updating the input file generator and re-

generating the files only took a day or so, debugging
the resulting test cases often took several days. If a
test case failed, it could have been because of a real
bug, or because of an error in the input file. Some of
these were obvious, and detected in a dry run with a
few test cases. Others were more subtle and occurred
only under certain conditions. These were not detected
until the analysis phase, at which point the cases had
to be re-run and re-analyzed.

This problem was exacerbated by undocumented in-
terface changes. Many of the planner interfaces were
internal to the Remote Agent. Changes were sometimes
omitted from the release notes, and would not become
apparent until the test cases were analyzed.

This experience indicates that it is preferable to
maintain stable interfaces throughout testing if at all
possible. If interfaces must change, they should do so
infrequently and the decision to change them should
factor in the test impact.

However, two key interfaces are particularly resistant
to this policy: the initial state and the mission profile.
These files are comprised of tokens, and if these token
definitions change in the domain model, these input
files must also change. Table shows how the token
parameters changed over time. The number of token
types remained constant.

We observed that token parameters were most often
added in order to propagate values for use by compati-
bilities or heuristics and did not record values specified
externally. We created the notion of a private parame-
ter to avoid changes. Private parameters do not appear
in the initial state or profile, but are added automati-
cally by the MM. Their values are set automatically by
propagation from other parameters. This reduced the
number of impactful parameter changes from 30 to 10.

We addressed the initial state problem by negotiating
an interface to the initial-state generating function in
the EXEC code. The test harness constructed an initial
state by sending appropriate inputs to those functions,
which would then create the initial state that was iden-
tical to the one used without the harness.

Token
navigate
op nav window
no op nav
waypoint
no op nav
op nav window
exec goal
sep timer idle
SEP standby
no activity
micas health
MICAS ready
RCS turn
sep turn
exec activity

Type
goal
goal
goal
goal
goal
goal
goal
init
init
init
init
init
internal
internal
internal

Public
+3

+1

+5
+1

Private

+8
+4
+1
+1
+1

-1
+l
+1
+1
-1

+1

Version
026
026
026
026
027
029
029
019
019
029
029
029
019
026
029

Table 6: Token Parameter Changes

With baseline testing approach, the baseline profile
and the most likely variants are expected to change over
time, and in practice changed with each test release.
The baseline profile is known to work, since that is the
acceptance criteria for delivering the software for test-
ing. The variant profiles are created by hand from the
baseline profile. It is difficult to generate valid pro-
files (ones with satisfiable goals), since it requires some
knowledge of how the goals interact with the domain
model. The debugging effort for the mission profile
variants could have been greatly reduced by automat-
ically checking the profile validity. One could imagine
automating these checks by using an abstraction of the
domain model to prove that a set of goals are unsatis-
fiable.

The debugging effort for other inputs could have been
reduced in a similar fashion. The syntax and seman-
tics of each input file could be formally specified and
automatically verified against that specification. This
would have detected interface changes (the input files
would be invalid) and eliminated most of the debugging
effort by detecting input file inconsistencies early and
automatically.
Changing Requirements. Whenever the require-
ments changed, the automated requirement checkers
had to be updated accordingly. The requirements
documents often lagged development, so requirement
changes were sometimes not detected until the bug re-
porting phase. The documents and automated check-
ers then had to be updated. In some cases, several
test cases had to be re-analyzed against the changed
requirement.

It is almost impossible to get all the requirements
right in the first draft of the requirements document. A
certain amount of inefficiency and missed requirements
should be expected for the first few test cycles as the
document is refined. It may be possible to converge
faster by having the developers to run the automated

plan checker on the baseline scenario before releasing
the software for testing. This will highlight the obvious
discrepancies between the formal requirements and the
developer’s expectations.

Running Tests Unnecessarily. When the domain
model changes it may not be necessary to run all the
tests again. Some test results from the previous version
of the model may still be valid. We had no way to iden-
tify these “unimpacted” tests confidently, and therefore
had to run all of the tests in every test cycle. If a reli-
able method were available, it could significantly reduce
the number of tests that had to be run in each test cycle
with no increase in risk. One could imagine analyzing
the domain model to determine whether the test case
would exercise the changes. For example, a test case in
which the MICAS camera is stuck off would not exercise
a change to the duration of the MICAS-ON token.

This capability would also allow one to assess the
cost of testing proposed model changes. This is an im-
portant factor in deciding how (or even whether) to
fix a bug near delivery, and in assessing which fixes or
changes to include in a release.

Analysis Costs. The oracles identify cases that do
not meet the requirements, but do not explain why they
failed. For each failed test case, the analyst determines
the proximate cause of the failure and groups cases that
have similar causes. This diagnosis provides a strong
hint for finding the underlying bug, and is critical for
tracking progress. If the analyst simply stated that the
planner failed to generate a plan on the following fifty
test cases, that could mean there are fifty underlying
bugs or just one. The first requires far more work than
the second. The initial diagnoses provide a much better
estimate of the number of outstanding bugs.

These analyses took eight to ten work-days for a typ-
ical test cycle and were largely unautomated. To deter-
mine why a plan failed to converge required the tester
to examining the plan search trace and consider how the
test case differs from cases that do not exhibit the be-
havior. Plan correctness failures require similar review,
although it is somewhat simpler (2-3 days) since the
failure is isolated and the oracle identifies the offending
plan elements.

Automated diagnosis could reduce these efforts, es-
pecially for determining why the planner failed to gen-
erate a plan. There has been some work in this area
that could be applied or extended. Howe (Howe & Co-
hen 1995) performed statistical analyses of the planner
trace to determine which combinations of state and re-
pair operator were abnormally likely to cause failures.
Chien (Chien 1998) allowed the planner to generate a
plan, when it was otherwise unable to, by ignoring prob-
lematic constraints. Analysts were able to diagnose the
underlying problem more quickly in the context of the
resulting plan.

Conclusions
The main requirements for the Remote Agent planner
were to generate a plan within the time limit, and that

the plan be correct. The validation approach for the
Remote Agent planner was to invoke the planner on
several test cases, and automatically check the results
for convergence and plan correctness. Correctness was
measured against a set of requirements developed by
the planning team and validated by system and sub-
system engineers. The cases were selected to exercise
key boundary points and extrema in the mission profile
(goals) and domain model. These values were identi-
fied informally, based on the tester’s knowledge of the
domain model.

Our informal coverage metrics required only a few
hundred cases to obtain good coverage of the inputs
that would occur on-board for any given set of goals,
but required thousands of cases to cover the entire
goal space. This was unmanageable given the avail-
able workforce, even with automated plan checkers and
test runners.

Analysis costs were high because of the need to pro-
vide initial diagnoses for cases where the planner failed
to generate a plan, and the need to review the plan
checker’s output. Changes to the planner interfaces, in-
cluding changes to the model, also created an overhead
for updating and debugging the test harness. Changing
requirements imposed a similar overhead on the auto-
mated requirement checkers. We suggested a number
of ways to mitigate these factors.

Since we could not manage the number of cases
needed to adequately cover the entire goal space, we
focused our efforts. The planner only had to work on
one set of goals-those used in flight-but those goals
would not be finalized until a few weeks before the ex-
periment. We therefore focused our cases on the current
baseline goals and few likely variations to it. This ex-
ercised the planner on inputs close enough to the final
baseline that when the final baseline was tested just be-
fore the experiment only a few minor bugs were found.

Chasing an evolving baseline imposed an overhead
of updating and debugging the test suite and test har-
ness when the baseline changed. It was also vulnera-
ble to late, radical changes to the baseline despite Re-
mote Agent’s success with such changes. This approach
should only be used with full knowledge of the inherent
risks and limitations.

A better approach would be to exercise the goal space
more completely. This would almost certainly require
far more test cases than we were able to manage for the
Remote Agent planner. There are a number of open re-
search opportunities in this area. Formal coverage met-
rics are sorely needed for planners. Such metrics could
guide the test selection and inform decisions on bal-
ancing risk (coverage) against cost (number of cases).
Clever metrics may also be able to reduce the number of
cases needed for a given level of coverage as compared to
the straightforward metrics used for the Remote Agent
planner.

The number of manageable cases could also be in-
creased by reducing the demand for human involve-
ment. Automated diagnosis methods would eliminate

one bottleneck, especially methods for determining why
no plan was generated. Methods for identifying ille-
gal inputs, especially illegal goals and initial states,
would eliminate some of the test-case debugging effort,
as would process improvements for limiting interface
changes.

The Remote Agent was a real-world, mission-critical
planning application. Our experience in validating the
Remote Agent planner raised a number of key issues.
We addressed several of these, but many issues remain
open. As planning systems are increasingly fielded in
critical applications the importance of resolving these
issues grows as well. Hopefully the Remote Agent ex-
perience will spark new research in this important area.

Acknowledgments
This paper describes work performed at the Jet Propul-
sion Laboratory, California Institute of Technology, un-
der contract from the National Aeronautics and Space
Administration, and by the NASA Ames Research Cen-
ter. This work would not have been possible without
the efforts of the rest of the Remote Agent Experiment
team and our assistant testers Todd Turco and Anita
Govindjee.

References
Bernard, D.; Dorais, G.; Fry, C.; Gamble, E.; Kanef-
sky, B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak,
P.; Pell, B.; Rajan, K.; Rouquette, N.; Smith, B.; and
Williams, B. 1998. Design of the remote agent exper-
iment for spacecraft autonomy. In Proceedings of the
1998 IEEE Aerospace Conference.
Chien, S. 1998. Static and completion analysis for
knowledge acquisition, validation and maintenance of
planning knowledge bases. International Journal of
Human-Computer Studies 48:499-519.
Cohen, D.; Dalal, S.; Parelius, J.; and Patton, G. 1996.
The combinatorial design approach to automatic test
generation. In IEEE Software, 83-88.
Etzioni, 0. 1993. Acquiring search control knowledge
via static analysis. Artificial Intelligence 62:255-302.
Feather, M., and Smith., B. 1999. Automatic genera-
tion of test oracles: From pilot studies to applications.
In Proceedings of the Fourteenth International Confer-
ence on Automated Software Engineering (ASE-99),
63-72. Cocoa Beach, FL: IEEE Computer Society.
Best Paper.
Feather, M. 1998. Rapid application of lightweight
formal methods for consistency analysis. IEEE Trans-
actions on Software Engineering 24(11):949-959.
Howe, A. E., and Cohen, P. R. 1995. Understand-
ing planner behavior. Artificial Intelligence 76(2):125-
166.
Knoblock, C. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2).

Muscettola, N.; Smith, B.; Chien, C.; Fry, C.; Rajan,
K.; Mohan, S.; Rabideau, G.; and Yan, D. 1997. On-
board planning for the new millennium deep space one
spacecraft. In Proceedings of the 1997 IEEE Aerospace
Conference, volume 1, 303-318.
Nayak, P.; Bernard, D.; Dorais, G.; Gamble, E.;
Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Rajan, K.; Rouquette, N.; Smith, B.; Taylor, W.; and
Tung, Y. 1999. Validating the dsl remote agent.
In International Symposium on Artificial Intelligence
Robotics and Automation in Space (ISAIRAS-99).
O’Keefe, R., and O’Leary, D. 1993. Expert system
verification and validation: a survey and tutorial. AI
Review 713-42.
Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and
Smith, B. 1997. Robust periodic planning and execu-
tion for autonomous spacecraft. In Proceedings of the
Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97).
Schoppers, M. 1987. Universal plans for reactive
robots in unpredictable environments. In IJCAI 87.
Williams, B., and Nayak, P. 1996. A model-based ap-
proach to reactive self-configuring systems. In Proceed-
ings of the thirteenth national conference on artificial
intelligence (AAAI-96), 971-978.

